bakimliyiz
Sponsor Reklamlar
Geri git   Bakimliyiz.Com > GENEL KÜLTÜR > Eğitim ve Öğretim

Kadın Portalı Kayıt Ol İletişim Forumları Okundu Kabul Et
Alt 02-04-2013, 03:51   #1 (permalink)
 
ebush - ait Kullanıcı Resmi (Avatar)
 
Standart Mısırlılarda matematik-Mezopotamya cebirinin gelişim tarihi

Mısırlılarda matematik-Mezopotamya cebirinin gelişim tarihi

Mısırlılarda Matematik

İnceleyebildiğiniz kaynaklarda; Mısırlılarda bugünkü cebirin herhangi bir şeklinin varlığına dair kesin bilgiler görülmemektedir. Ancak; Mısırlılarda bugünkü cebir konularına benzeyen oldukça ilkel cebirin varlığı görülmektedir. Bu konuda a h a h e s a b ı adı verilen bir hesaplama türüne raslanlmaktadır. Bu hesaplama türü hakkında Aydın Sayılı Mısırlılarda ve Mezopotamyalılarda Matematik Astronomi ve Tıp adlı eserinde Berlin ve Rhind Papirüslerine dayanarak şu bilgiyi vermekte;

A h a kelimesi grup ya da miktar anlamına gelmektedir. Böyle adlandırma bir metot görüşü olarak yapılmış olmakla beraber a h a hesaplarında "Yanlış ve Deneme yoluyla Yoklayarak çözüm" metodu kullanılmış olduğu görülmektedir. Ayrıca bu usulle bazı çözümler cebiri hatırlatıyor. Adı geçen eserde; bu tür hesabın nasıl yapıldığına dair açıklamalı iki örnek verildikten sonra; müsteşrik S. Gantz'a atfen altı örnek belirtmektedir. Bunlar :

1)
x/y = 4/3 ; xy = 12

2)
xy = 40 ; x = (5/2)y

3) xy = 40 ; x/y = (1/3) + (1/15) = 2/5

4)
10xy = 120 ; y = (3/4)x

5) x2 + y2 = 100 ; y = (3/4)x

6)
a2 + b2 = 400 ; a = 2x ; b = (3/2)x

Hemen belirtmek gerekir ki; bu örnekler Mısırlıların a h a hesabında yaptıklarının bugünkü cebrik düşünceye göre düzenlenmiş gösterim ve tertip şekilleridir.

Yukarıdaki altı tip örnekte görülebileceği gibi problemler hep özel durumları temsil ediyor. Ancak Aydın Sayılı adı geçen eserinde bu konuda : "Mısırlı matematikçinin zihninde belli çözüm yollarının ve genel formüllerin bulunduğuna şüphe yoktur. Örneğin a h a hesaplarıyla ilgili papirüslerde herhangi bir metot söz konusu edilmemesine rağmen bunlarda özel bir metoda uyulduğu gayet sarih bir şekilde görülmektedir ... Problemlerin pedagojik amaçlarla bu şekilde tertiplenmiş oldukları söylenebilir."

Mezopotamya Matematiğinin gelişmiş bir durumda olan dalı da cebirdir. Kaynaklar; "Mezopotamya Matematiğinde" gelişmiş bir cebir bilgisinin var olduğunu belirtmekte bunun sonucu olarak da bugünkü cebirin kurucuları olarak Mezopotamyalıları göstermektedir.

Mezopotamya cebirinin gelişim tarihini üç safhaya ayırabiliriz. Bunlar :
a) Retorik Safha :
Bu safhada; bütün ayrıntılar normal cümleler halinde sözlü olarak belirtilmekte
b) Kısaltma Safhası : Bu safhada yer yer kısaltmalar klişe ifadeler ve semboller kullanılmakla beraber yine sözlü ifadeler az çok hakim durumda kalmakta.
c) Sembolik Safha : Bu safhada; a b x y2 (=) ve (+) gibi sembol ve işaretler kullanarak her şey sembolik denklemler ve münasebetler vasıtasıyla ifade edilmektedir.

Aydın Sayılı adı geçen eserinde "Mezopotamya Cebri" nin retorik safhada olduğunu belirtmekte ve şu bilgileri vermektedir.

" Mezopotamya cebir problemlerini ve çözümlerini ihtiva eden tabletlerde genellikle özel problemlerle ve bunların çözüm yolları ve çözüm sonuçları ile karşılaşıyoruz. Birinci derece denklemlerin çözümü Mezopotamyalılar için oldukça basit bir meseleydi. İkinci derece denklemleri ayrıntılı bir şekilde inceledikleri ve bu denklemlerin çözümlerinde büyük yetenek gösterdikleri görülmektedir. Metinlerde bazen üçüncü derece denklemleriyle de karşılaşılıyor. Üçüncü derece denklemlerin bazı basit tiplerini çözümleyebiliyorlardı. Bu çözümlerde bir takım özel cetvellerden yararlanmış oldukları anlaşıldığı gibi bazı örneklerin çözümünde tesadüfün de rolü olmuş olabilir. Ayrıca yoklama ve deneme suretiyle sonucun elde edilmesinden yararlanmış olabilirler. Genellikle ikinciden daha yüksek dereceden denklemlerin ikinci dereceye indirgenmesi mümkün olanlarını çözümleyebiliyorlardı. Bu gibi çözümlerde derecenin indirilmesi için yardımcı bilinmeyenlerin kullanılması metodundan geniş ölçüde faydalanıyorlardıçoğu kaynaklarda; cebir denildiğinde Eski Roma çağı Yunan matematikçisi Diofantos'un (225-400) adından bahsedilir. Diofantos'un Aritmetika adlı bir eseri mevcut olup bu eserde sistematik olmamak üzere münferit bazı cebir konuları ile birlikte ikinci derece denklemlerin çözümü görülmektedir. Ancak Diofantos devri Yunan matematiği bazı harf ve semboller ile ifade edilmekte olduğundan Diofatos'un Jukarda adını belirttiğimiz eseri Harezmi'deki cebir işaretleri ve sistemlerinin oynadığı rolden mahrum olması bakımından gerçek anlamda düzenli ve disiplinli bir cebir kitabı olmaktan uzaktır. Kaldı ki; Harezmi'nin Cebri ve'l Mukabele adlı eserinde görülen çözüm yolları tamamen geometrik düşüncelerle temellendirilmiş olup bu tür sistematik çözümü de cebire ilk ithal edenin Harezmi olduğu son yüzyıl içinde yapılan araştırmalarla ortaya konulmuştur.

Diofantos'ta görülen ikinci derece denklemlerin çözüm metotları Mezopotamyalılarınkine benzemektedir. Aydın Sayılı adı geçen eserinde : "Mezopotamyalılarda görülen denklem çözme geleneklerinin Diofantos'ta devam ettiği görülmektedir. Demek ki Diofantos'taki şekliyle Yunan cebri Mezopotamya cebirirıin hemen hemen doğrudan doğruya bir devamını Abdülhamit ibn-i vasi Türk (? - 847) ile Harezmi cebri ise tadil edilmiş bir şekildeki devamını teşkil etmektedir." Gene adı geçen eserde: Öklid'in Elementler adlı kitabında görülen:

(a+b)2 + (a-b)2 = 2 (a2+b2) veya

2(a2+b2) - (a+b)2 = (a-b)2 şeklindeki özdeşliğin cebirsel ifadelerin basitleştirilmesi ve çözümlerin kolay tiplere irca edilmesi için Mezopotamya matematikçileri tarafından kullanılmış olduğu belirtilir.

İçinde bulunduğumuz yüzyılın araştırmaları;
Eski Hint Dünyasında özellikle 6. 7. 9. ve 12. yüzyıllarda matematikle ilgili olarak çağının bilgi seviyesinin üst düzeyinde ilginç bilimsel çalışmaların varlığını ortaya koymuştur. Eserleriyle adları zamanımıza kadar gelebilen Hint matematikçileri bilim tarihinde kendilerini etkin bir şekilde göstermektedir. Bunlardan belirttiğimiz yüzyıllar içinde yaşamış olanlardan : Brahmagupta (598-660) Aryabatha (6. yüzyıl) Mahavra (9. yüzyıl) ve Bhaskara'nın (1114-1158) adlarını belirtebiliriz.

Kaynaklar;
Brahmagupta'nın Kutakhadyaka adlı eserinde de münferit cebir konularının görüldüğünü ancak bunların düzenli ve ayrıntılı olarak cebir konularını kapsayan sistematik bir eser olmaktan uzak olduğunu belirtir.

Buraya kadar; adlarını belirttiğimiz Diofantos'un Aritmetika ve Brahmagupta'nın Kutakhadyaka adlı iki eserde ikinci derece denklemlerin çizim yoluyla (geometrik yolla) çözümlerinden bahis olmadığını ve mevcut bilgilerin de Mezopotamya menşeli olduğunda kaynaklar hemfikirdirler. Bazı kaynaklar Bizans'ta ileri bir matematiğin varlığı hakkında geniş bilgi verirler. Ortalama 1000 yıllık hayatı olan Bizans'ın matematik tarihinde Eski Yunan matematiğini ilerletip geliştirmesi bakımından pek parlak bir duruma sahip değildi. Bu devir matematikçileri olarak belirtilen ve aynı zamanda Nikomedya (İzmit) rahibi olan Masimus Planudes (İzmit 1260 -İstanbul 1310) Diofantos'un birinci ve ikinci kitaplarına dair sadece tefsir yazabilmiştir. M. Planudes'in en çok bahsedilen eseri 1300 yılında yazdığı Hint Hesabı'dır. Planudes; bu eserinde karekök alma kuralını Diofantos'un eserini esas almak suretiyle Hint metodunu tatbik etmişti.

14. yüzyılın ikinci yarısından itibaren 15. yüzyılın ilk yansına kadar (İstanbul'un fethi yıllarına kadar) Bizans matematiğinde bilim tarihinde isim bırakmış matematikçilere rastlanılmaz. Bu tarihlerde siyasal olaylar yüzünden bilim ihmal edilmiştir. Bu tarihlerin ilginç bir olayı İstanbul'da gizli kalmış özel kişisel kitaplıkların dışında elyazması (manüskrit) ne kadar eser varsa İtalya'ya götürülmüştür. İstanbul'da elyazmalarına ait hiç bir eser bırakmamışlardır. Givanni Aurispa'nın (1369-1460) Bizans'tan Venedik'e 238 elyazması eser götürdüğü tarihi bir olay olarak bilinmektedir.

Bizans matematiğinin durumunu ayrıntılarıyla incelemiş olan Hamit Dilgan Matematik Tarih ve Tekamülüne Bir Bakış adlı eserinde şöyle yazar : "Bizans'ta tam anlamıyla büyük matematikçi yetişmemiştir. Birçoğunun eserleri (birkaçı müstesna) mütevazı ve basittir Hatta bazılarının eserlerindeki problemlerin yazarları tarafından anlaşılamadığı seziliyor... Bütün bu hususlar Eski Yunan dehasının gerilemiş ve tükenmiş olduğuna canlı birer örnek teşkil eder. Şu kadar var ki Bizans matematiği aynı devrelerdeki Roma matematiğinden çok daha ileri bir durumda olmakla beraber Doğu İslam Dünyası MatematiğineObjektif olarak hazırlanmış matematik tarihi eserleri incelendiğinde açık olarak şu hüküm görülür; Matematiğin geniş bir dalı olan cebire ait temel bilgilerin büyük bir çoğunluğu 8. ile 16. yüzyıl Türk İslam Dünyası alimleri tarafından ilk olarak ortaya konulmuş ve belli bir noktaya kadar da geliştirilmiştir.


ebush isimli Üye şimdilik offline konumundadır  





Hızlı Cevap

Doğrulama Sorusu
Mesajınız:
Yazı şeklini sil
Kalın
Eğik yazı
Altı çizik

Grafik ekle
Alıntı yap [QUOTE]
 
Alanı Küçült
Alanı Büyült

Seçenekler
Stil


Mısırlılarda matematik-Mezopotamya cebirinin gelişim tarihi

Mısırlılarda matematik-Mezopotamya cebirinin gelişim tarihi konusu, GENEL KÜLTÜR / Eğitim ve Öğretim forumunda tartışılıyor.


Konu etiketleri: mezopotamya cebirinin gelisim tarihinde, mezapotamya cebir, mezopotamya cebir, mezopotamya matematigini cozme, mezopotamya matematikçileri, mısırlılar ve matematik,

Benzer Konular

Konu Konuyu Başlatan Forum Cevap Son Mesaj
Matematik Tarihi Şeridi elif Matematik 4 29-05-2014 03:34
Matematik Tarihi ve Buluşların Önemi elif Matematik 0 16-06-2011 12:46
Matematik Tarihi Hakkında Bilgi elif Eğitim ve Öğretim 0 15-06-2011 04:14
Matematik sembollerinin tarihi gelişimi nasıldı? elif Eğitim ve Öğretim 0 14-06-2011 04:32
Türk Dilinin Tarihi Gelişim Süreci elif Tarih 0 04-02-2011 06:13

Üye olmadan soru sorabilirsiniz!

Bütün Zaman Ayarları WEZ +4 olarak düzenlenmiştir. Saat şuan 06:37 .


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.5.2 ©2010, Crawlability, Inc.
Web Stats