bakimliyiz
Konu etiketleri: prizmaların açılımları, prizmalar ve açılımları, beşgenin açılımı, beşgen açılımı, prizmaların açılımı, beşgen prizma açılımı, beşgen prizmanın açılımı, beşgen prizma ve açılımı, prizmalar açılımları, küpün açılımı, geometrik cisimlerin açılımı, beşgen in açılımı, dikdörtgensel bölgenin açılımı, 5 genin açılımı, geometrik cisimler ve açılımları,
Sponsor Reklamlar
Geri git   Bakimliyiz.Com > GENEL KÜLTÜR > Eğitim ve Öğretim > Matematik

Kadın Portalı Kayıt Ol Reklam Verin İletişim Forumları Okundu Kabul Et
Alt 15-06-2011, 10:23   #1 (permalink)
 
elif - ait Kullanıcı Resmi (Avatar)
 
Standart Prizmaların açılımları

Prizmaların açılımları

Prizma Nedir?
Birbirine eşit ve paralel iki düzlemin köşelerinin birleşmesi sonucu elde edilen cisme prizma denir.

Dik Prizma Nedir?
Tabanları herhangi bir çokgensel bölgeyan yüzleri dikdörtgensel bölge olan cisimlere dik prizma denir.Dik prizmalarda tabanları birleştiren yanal ayrıtlar tabanlara diktir.
Tabanları düzgün çokgensel bölge olan dik prizmalara düzgün dik prizmalar denir.
Prizmalar tabanlarına göre isimlendirilir.Üçgen prizmakare prizmadikdörtgenler prizmasıaltıgen prizmabeşgen prizma gibi...

Cisim Köşegeni: Prizmada karşılıklı alt köşeyi üst köşeye birleştiren uzunluğa cisim köşegeni denir.Küpte 4 tane cisim köşegeni vardır.

Dik Prizmaların Özellikleri
1) Tabanları birbirine eş ve paraleldir.
2) Yan yüzleri dikdörtgensel bölgelerdir.
3) Herbir köşede kesişen ayrıtları birbirine diktir.
4) Yanal ayrıtlar aynı zamanda yüksekliktir.

Dik Prizmaların Alanları
Dik prizmaların alanı demek prizmanın dış yüzeyinin kapladığı alan demektir.Tüm dik prizmaların alanı için aşağıdaki formül kullanılır.
Alanı=2.(taban alanı)+(yükseklik).(taban çevre uzunluğu)
Küpün Alanı:
A=6.a
Dikdörtgenler Prizmasının Alanı:
A=2.(a.b+a.c+b.c)

Dik Prizmaların Hacimleri
Dik prizmaların hacmi demek içine doldurulan sıvının kapladığı yer demektir.Tüm dik prizmaların hacmi için aşağıdaki formül kullanılır.
Hacim=(taban alanı).(yükseklik)
Küpün Hacmi:
V=a.a.a
Dikdörtgenler Prizmasının Hacmi:
V=a.b.c

Küp
6 Tane karesel bölgenin birleşmesi sonucu meydana gelen kapalı kutu şekline küp denir.6 Tane birbirine eşit kare vardır.Tavla zarını örnek verebiliriz.
Prizmaların açılımları
Kare Dik Prizma
2 Tane karesel4 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya kare dik prizma denir.Gökdelenleri örnek verebiliriz.
Prizmaların açılımları

Kare Dik Prizmanın Özellikleri:
Yüz Sayısı=6
Yanal Yüz Sayısı=4
Taban Sayısı=2
Köşe Sayısı=8
Yanal Ayrıt Sayısı=4
Taban Ayrıt Sayısı=8
Toplam Ayrıt Sayısı=12
Tabanlar kareyanal yüzler dikdörtgendir.

Dikdörtgenler Prizması
6 Tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya dikdörtgenler prizması denir.Kibrit kutusunu örnek verebiliriz.

Dikdörtgenler Prizmasının Özellikleri:
Yüz Sayısı=6
Yanal Yüz Sayısı=4
Taban Sayısı=2
Köşe Sayısı=8
Yanal Ayrıt Sayısı=4
Taban Ayrıt Sayısı=8
Toplam Ayrıt Sayısı=12
Tabanlar ve yanal yüzler dikdörtgendir.

Üçgen Dik Prizma
2 Tane üçgensel3 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya üçgen dik prizma denir.Çatıları örnek verebiliriz.
Prizmaların açılımları
Üçgen Dik Prizmanın Özellikleri:
Yüz Sayısı=5
Yanal Yüz Sayısı=3
Taban Sayısı=2
Köşe Sayısı=6
Yanal Ayrıt Sayısı=3
Taban Ayrıt Sayısı=6
Toplam Ayrıt Sayısı=9
Tabanlar üçgenyanal yüzler dikdörtgendir.

Altıgen Dik Prizma
2 Tane altıgensel6 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya altıgen dik prizma denir.Arı peteklerini örnek verebiliriz.
Prizmaların açılımları
Altıgen Dik Prizmanın Özellikleri:
Yüz Sayısı=8
Yanal Yüz Sayısı=6
Taban Sayısı=2
Köşe Sayısı=12
Yanal Ayrıt Sayısı=6
Taban Ayrıt Sayısı=12
Toplam Ayrıt Sayısı=18
Tabanlar altıgenyanal yüzler dikdörtgendir.

Beşgen Dik Prizma
2 Tane beşgensel5 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya beşgen dik prizma denir.
Prizmaların açılımları
Beşgen Dik Prizmanın Özellikleri:
Yüz Sayısı=7
Yanal Yüz Sayısı=5
Taban Sayısı=2
Köşe Sayısı=10
Yanal Ayrıt Sayısı=5
Taban Ayrıt Sayısı=10
Toplam Ayrıt Sayısı=15
Tabanlar beşgenyanal yüzler dikdörtgendir.

EĞİK PRİZMALAR
Tabanları herhangi bir çokgensel bölgeyan yüzleri paralelkenarsal bölge olan cisimlere eğik prizma denir.Tabanları birleştiren yanal ayrıtlar tabanlara dik değildir.Eğik prizmalarda yan yüzler paralelkenardır.
Prizmaların açılımları


DİK DAİRESEL SİLİNDİR NEDİR?

Silindir geometrik bir cisimdir.

Hacmi: V = π. r². h

Yüzey alanı: A = 2π r² + 2 π r h = 2 π r ( r + h ).

Bir dikdörtgenin bir kenarı etrâfında döndürülmesiyle elde edilir. Bu silindire dik veya eğik silindir denir. Alt ve üst tabanı dâiredir. Soba borusu dik silindire bir örnektir.

SİLİNDİR'İN ALANI:
A = yanal alan + 2.taban alan
A = 2.π.r.h + 2.π.r.r
(π=314 alırız r taban yarıçapı h yükseklik)

Örnek: Taban yarıçapı 1cm ve yüksekliği 4cm olan silindirin alanını bulunuz.(π=3)
A= 2.3.1.4+2.3.1.1= 24+6= 30cmkare

SİLİNDİR'İN HACMİ:
H = taban alan.yükseklik
H = π.r.r.h
(π=314 alırız r taban yarıçapı h yükseklik)
(konserve tenekesi)

Örnek: Taban yarıçapı 4cm ve yüksekliği 5cm olan silindirin hacmini bulunuz.(π=3)
H= 3.4.4.5= 240cmküp

Silindirin Açınımı ve Açık Şekli
Prizmaların açılımları

elif isimli Üye şimdilik offline konumundadır  

Alt 28-04-2012, 06:33   #2 (permalink)
Misafir
Avatar Yok
 
Standart

sınavdan sayenizde yüz aldım

 
Alt 15-11-2013, 08:05   #3 (permalink)
Misafir
Avatar Yok
 
Standart

Eyyyy ama daha fazla bilgi olsa da iyi olurdu

 




Hızlı Cevap

Doğrulama Sorusu
Mesajınız:
Yazı şeklini sil
Kalın
Eğik yazı
Altı çizik

Grafik ekle
Alıntı yap [QUOTE]
 
Alanı Küçült
Alanı Büyült

Seçenekler
Stil


Prizmaların açılımları

Prizmaların açılımları konusu, Eğitim ve Öğretim / Matematik forumunda tartışılıyor.



Benzer Konular

Konu Konuyu Başlatan Forum Cevaplar Son Mesaj
Devirli Ondalık Açılımları Rasyonel Sayıya Çevirme elif Eğitim ve Öğretim 1 03-08-2014 09:54

Üye olmadan soru sorabilirsiniz!

Bütün Zaman Ayarları WEZ +2 olarak düzenlenmiştir. Şu Anki Saat: 10:59 .


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
SEO by vBSEO 3.5.2 ©2010, Crawlability, Inc.
Web Stats